intractable computational complexity - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

intractable computational complexity - перевод на русский

MEASURE OF THE AMOUNT OF RESOURCES NEEDED TO RUN AN ALGORITHM OR SOLVE A COMPUTATIONAL PROBLEM
Asymptotic complexity; Computational Complexity; Bit complexity; Context of computational complexity; Complexity of computation (bit); Computational complexities

intractable computational complexity      
вычислительная сложность
asymptotic complexity         

математика

асимптотическая сложность

computational complexity         

общая лексика

вычислительная сложность

число шагов или арифметических операций, требуемых для решения вычислительной проблемы

Смотрите также

complexity

Определение

МАТЕМАТИЧЕСКАЯ ЛИНГВИСТИКА
математическая дисциплина, предметом которой является разработка формального аппарата для описания строения естественных и некоторых искусственных языков.

Википедия

Computational complexity

In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem.

The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for designing efficient algorithms, it is often fundamental to compare the complexity of a specific algorithm to the complexity of the problem to be solved. Also, in most cases, the only thing that is known about the complexity of a problem is that it is lower than the complexity of the most efficient known algorithms. Therefore, there is a large overlap between analysis of algorithms and complexity theory.

As the amount of resources required to run an algorithm generally varies with the size of the input, the complexity is typically expressed as a function nf(n), where n is the size of the input and f(n) is either the worst-case complexity (the maximum of the amount of resources that are needed over all inputs of size n) or the average-case complexity (the average of the amount of resources over all inputs of size n). Time complexity is generally expressed as the number of required elementary operations on an input of size n, where elementary operations are assumed to take a constant amount of time on a given computer and change only by a constant factor when run on a different computer. Space complexity is generally expressed as the amount of memory required by an algorithm on an input of size n.

Как переводится intractable computational complexity на Русский язык